
N87-25899

ANALYSIS OF THE CONTINUOUS STELLAR TRACKING

ATTITUDE REFERENCE (CSTAR) ATTITUDE RATE PROCESSOR

J. Uhde-Lacovara
Assistant Professor

Department of Electrical Engineering
Stevens Institute of Technology

Hoboken, N.J. 07030

The Continuous Stellar Tracking Attitude Reference (CSTAR) system

is an in-house project for Space Station to provide high accuracy,

drift free attitude and angular rate information for the GN&C system.

The outputs of the solid state star trackers are processed to provide

attitude information; rate data is then derived from the attitude. Rate

derivation is based on discrete time polynomial approximation

techniques. This gives simple algorithms which allow for interpolation

by other users. Attitude rate is modeled as a constant with low

amplitude, low frequency sinusoids superimposed.

The rate processor is parameterized to account for the effects of

random errors, sample rate, data processing rate and perturbation

frequency. The baseline system may be characterized as follows: the

three sigma attitude accuracy is 0.01 degrees, the three sigma rate

accuracy is 0.0001 degrees per second, the sample rate is 100 Hertz,the

sampled signal is bandlimited to 0.5 Hertz, and the data processsing

rate is 10 Hertz. The above system requires a differentiator of length

127. This will track rate perturbations of frequencies less than 0.01

Hertz with low systematic errors.
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INTRODUCTION

The Orbiter uses rate gyroscopes and accelerometers as sensing

devices to provide data for position and attitude control. These

instruments need to be periodically updated by inertial reference

information from star trackers, because their accuracy drifts with

time. An alternative to this traditional system is being developed for

Space Station as an in-house project of the Avionics System Division at

Johnson Space Center. This project is called CSTAR for Continuous

Stellar Tracking Attitude Reference. Drift free, high accuracy

attitude information is supplied by using solid state star trackers to

continuously track stars.

The CSTAR system requires multiple fields-of-view (f.o.v.) to

provide three-axis information with minimal possibility of obscuration.

The three sigma accuracy requirements for attitude and attitude rate on

Space Station are presently set at 0.01 degrees and 0.0001 degrees per

second respectively. This data is to be provided at a rate of 10

Hertz. The current, two f.o.v, breadboard CSTAR system is capable of

meeting the three sigma attitude accuracy requirement at the 10 Hertz

rate. The breadboard CSTAR uses a modifed charge injection device

(CID) television camera. Attitude rate is to be derived from the

attitude information to provide backup for the rate gyroscopes. The

attitude rate processor at the sensor level is to meet the accuracy and

sampling rate requirements in a reasonable frequency range. It is

not intended to be a sophisticated, adaptive type processor which meets

the very specific needs of individual users. Examples of these types

of processors may be found in the references [1,2].
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THEORY

An attitude rate processor must perform the operation of

differentiation on the attitude data. This may be treated as a

numerical analysis problem in the discrete time domainwhere the

samples are equally spaced. Shannon's sampling theorem is of prime

importance [3,4]. The system will not be able to accurately reproduce

or process any data which has frequency componentsgreater than one

half of the sampling frequency. The steady state transfer function of

a differentiator is given by

H(e_T) : j_o , where T is the sample period [5].

This meansthat the magnitude response is proportional to frequency

with a phase shift of ninety degrees for frequencies from zero to 1/2T

Hertz; this response repeats periodically.

Discrete time differentiation is amenableto polynomial

approximation techniques where the coefficients are derived from the

data points [6]. The signal componentof the attitude data is assumed

to be a rampwith one or more sinusoids superimposed on it. The ramp

slope is proportional to the dc componentof the rate; the sinusoids

are assumedto be of relatively low frequency. The rampportion of the

signal can be correctly differentiated by an approximation of order one

or greater. A sinusoid cannot be represented by a finite sumof

polynomials. No matter how high the order of the approximation, it

will not exactly reproduce the derivative of a sinusoid.

Lagrangeapproximation techniques yield a curve fit in which the

order of the approximation is equal to the number of data points used
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for the fit [7]. An example of this type of fit is given by the

Stirling approximation for the derivative [8]. A sixth order

approximation yields the following transfer function:

H(z) : ( z_ - 9 zZ+ 45 z - 45 z"l + 9 z-_ - z "3 )/60

This transfer function may be made causal by multiplying by z"]. A

plot of the magnitude response of the Stirling differentiator and the

ideal differentiator is shown in Figure 1. The frequency in Hertz is

given by N/(1024T) where N is the frequency value on the plot. The

Stirling differentiator closely approximates the ideal response in the

lower frequency range; higher frequencies are attenuated. This should

not be of concern, because the sample rate can always be chosen so that

the frequencies of interest are not significantly attenuated. From a

noise standpoint, the attenuation of higher frequencies may be

desi rable.

In practice, numerical differentiation is a more difficult

operation than numerical integration [9,10]. The data to be

differentiated are made up of a signal component and a noise component.

The noise is assumed to be zero mean, uncorrelated, white Gaussian

noise. This assumption is confirmed by analysis of the experimental

data obtained from the CSTAR breadboard system. When this random noise

is differentiated, the derived rate can have a very large noise

component added to it. The Stirling differentiator shown in Figure 1

does not sufficiently attenuate the random noise to meet the rate

accuracy requirements. A least squares type of approximation is more

appropriate for this application [11].
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In a least squares curve fit, the order of the approximation, m,

is equal to or less than the number of data points to be fit, L. The

length of the digital filter which realizes the approximation is L. In

this application, the spacing between the data points is uniform and is

equal to the sample period, T. The point at which the approximation is

madeis also a variable. For example, it may be placed in the middle

of the data points or at the end. Errors in the approximation are due

to both the randomerrors in the original signal, and the systematic

errors introduced by the approximation itself. The above parameters

affect how the randomerrors are reduced, and how large the systematic

errors are. Randomerrors are decreased by the following:

1). Increasing the filter length, L.

2). Increasing the sample period, T.

3). Using a lower order approximation, m.

4). Smoothing to the center.

The systematic errors are reduced by the following:

1). Decreasing the filter length for a given sample period.

2). Decreasing the sample period for a given length.

3). Using a higher order approximation.

4). Smoothing to the center.

It can be seen from the above statements that, except for smoothing

to the center, the selection of parameters to reduce randomerrors is

in direct conflict with the need to choose parameters to decrease the

systematic errors. Although smoothing to the center is desirable, it

is not possible in a causal system without introducing time delay.
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The variance reduction factor (VRF) for the approximation of the

derivative is given by the following:

VRF= K/( T_ L_ ) for large values of L.

K is a constant which depends on the order of the approximation and the

point at which the data is smoothed. If L is not large, the exact

expression will give a VRFwhich is smaller than the one obtained from

the above equation. The systematic errors will be considered in

relation to the steady state frequency response of the digital filter

which implements the differentiator. This type of treatment lends

itself to the analysis of signalswhich are other than sinusoids. A

Fourier decomposition of an arbitrary function will yield its

sinusoidal components. Superposition can be used to obtain the

systematic error for the function.

The derivation of the coefficients in terms of the data points for

a second order least squares curve fit, smoothedto the center follows:

The function evaluated at the jth point from the center point is

f(j) = Po + P,j + Pzj_

Differentiating this gives

d[f(j)]/dj = p, + 2p_j

The coefficients maybe calculated from the following set of

simultaneous equations :
N A/ A/

_ k_ N k3

_" /v H

where (2N + 1) = L; N is an integer, Let S.,(N) = _k _, the
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simultaneous equations reduce to

0Sl::0 2Sz(N) 0

2Sz(N ) 0 2S_(N)

X y.+IV

_i i - " " 1 1 1 - _ I I •

= N-1 --" 1 0 1 ''" -(N-l) -N x

7_ (N_I)L .. I 0 I''" (N-I) _ N_

X_-W

Expressions for Smare given by

S, = N(N + 1)/2

S_ = N(N + 1)(2N + 1)/6

S_ = L_(L + 1)_/4

S_ = L(L + 1)(2L + I)(3L_" + 3L + I)/30

The simultaneous equations give simple solutions for the

polynomial coefficients in terms of the data points. The approximation

of the derivative at the endpoint is obtained by setting j = N. The

same transfer function is obtained if the simultaneous equations are

set up to smooth to the endpoint directly. Such an evaluation involves

the inversion of a 3x3 matrix, which is not necessary in the above

derivation. It is also useful to have all of the coefficients

availible so that users may obtain rate estimates for times which are

not sample points.

The sampling rate and the rate at which the data points are

processed need not be the same [12]. Time decimation requires that the
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sampled signal is bandlimited to prevent aliasing at the processing

rate. Bandlimiting the original signal will eliminate someof the high

frequency components. This reduces the standard deviation of the

randomnoise. A shorter length filter is then required to achieve the

sameoverall variance reduction. The systematic errors maythereby be

improved.

RESULTS

It is desirable to look at variance reduction in a normalized

fashion. All of the calculations and graphs are done in terms of the

ratio of the rate standard deviation, _ , to the position standard

deviation,_ . The ratio will be denoted by R for convenience. For

the Space Station requirements specified, R = 0.01. Figure 2 shows the

differentiator length as a function of the sample period for a second

order approximation smoothedto the endpoint with L determined by the

equation below.

L = [192/(R:TZ)] V_

A differentiator of length 577 is required for a sample rate of 10

Hertz and R = 0.01. For a sample rate of 1 Hertz and R = 0.25, the

differentiator length required is reduced to 15.

The magnitude response of a second order, length 15 differentiator

smoothedto the endpoint is presented in Figure 3, along with the ideal

response. The frequency in Hertz is given by N/(1024T) where N is the

frequency value on the plot. Themagnitude response agrees well with

the ideal at very low frequencies; frequencies above this range are
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over emphasizedin comparison to the ideal response. High frequencies

are attenuated; this is consistent with the desire to reduce the

variance of the Gaussian noise. A sine wave with amplitude of one and

frequency of 1/5400 Hertz (this is roughly the rate at which the Space

Station will orbit the Earth) was differentiated by the above filter.

A plot of the differentiated sine wave, both ideal and filtered, is

given in Figure 4. The agreement between the ideal and the filtered

waveforms is excellent with only the first 14 samples showing any

major deviation.

The systematic error for a given differentiator was related to the

difference between the magnitude response of the ideal transfer

function and that of the filter. This treatment ignores the phase

response which makes it inexact. At low frequencies, the phase shift

of the filter from ninety degrees is very small. This justifies the

use of only the magnitude response at low frequencies. At high

frequencies, the phase shift is large and adds significantly to the

systematic error. The magnitude error at these frequencies is also

very large, and operation at these frequencies should be avoided on

that basis alone. Plots of the systematic error versus frequency for

second order differentiators smoothedto the end point are given in

Figures 5 and 6. In each case, the sampling rate and the processing

rate are the same: 10 Hertz and 1 Hertz respectively.

If the data is sampled at one rate, and then processed at another

rate, the sampledsignal must be bandlimited so that there is no

aliasing at the lower rate. Bandlimiting also produces the desirable
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effect of reducing the standard deviation of the Gaussian noise. Fifth

order digital Butterworth filters with prewarping are used for

bandlimiting [13,14]. Table 1 gives the standard deviation, after

bandlimiting, of a set of 10,000 normally distributed randomsnumbers

with original standard deviation of 1. Reducing the standard deviation

of the randomnoise via bandlimiting reduces the length of the

differentiator neededto meet a certain set of specifications. This,

in turn, improves the systematic errors.

Several schemesfor sampling and processing at differents rates

are presented in Table 2. The systematic errors for each of these

processing schemesare given in Figures 7 through 10. in all of the

graphs, T represents the sample period, and _ represents the period at

which the data is processed. Figures 11 through 16 present a

comparison of the systematic errors of the appropriate schemesfor

various processing rates and values of R.

CONCLUSIONS

The above analysis shows that it is difficult to achieve

differentiators which have the desired data bandwidth, reduce random

errors, and accuratly process signals with other than very low

frequency components. The length 577 differentiator which meets the

current Space Station requirements for accuracy and bandwidth will have

systematic errors comparable to the randomerrors for frequencies

greater than 0.001 Hertz; this is assuming a sine wave of amplitude

one. For bandlimiting R = 0.01. If R is increased to 0.1 in schemeD,
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the usable frequency range edges up to about 0.01 Hertz. This decrease

in the value of R could represent a relaxation of the Space Station

requirements and/or the improvement of the CSTARattitude processor

accuracy. Bandlimiting below 0.5 Hertz should provide greater variance

reduction, and, therefore, shorter length differentiators with lower

systematic errors.

The digital filters needed for bandlimiting and differentiation

can be implemented in a straight forward mannerwith currently

available processors. Using Texas Instruments' TMS320family, the

numberof machine cylces per iteration of the filter is about equal to

the length of the differentiator (a nonrecursive filter), and twice the

order of the Butterworth lowpass filter (a recursive structure). Some

overhead must be added for inputting and outputting data, setting up

registers, etc. The TMS32025Chas a cycle time of 100 nanosecondswith

very low power consumption. Other processors should give comparable

results.
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TABLE 1

REDUCTION OF THE STANDARD DEVIATION WITH BANDLIMITING

u::T/2 _ SIGMA

IxlO '_ 3.46xI0 -_

2x10 "_ 5.66x10 -_

5x10 "_ 1.01x10 "_

lx10 "z 1.43x10 "_

2x10 "z 2.00x10 -_

5x10 "z 3.14x10"
.I

Ix10 "_ 4.45x10
2x10 -_ 6.27x10 -_

TABLE 2

SCHEMES FOR BANDLIMITING AT DIFFERENT

SAMPLING AND PROCESSING RATES

SCHEME

A

B

C

D

CUTOFF FREQUENCY

5 HERTZ

0.5 HERTZ

0.5 HERTZ

0.5 HERTZ

SAMPLING RATE

100 HERTZ

100 HERTZ

10 HERTZ

100 HERTZ

PROCESSING RATE

10 HERTZ

1 HERTZ

1 HERTZ

10 HERTZ
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FIGURE I
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FIGURE 2
SECOND ORDER APPROXIMATION
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OF POOR QUALITY

FIGURE 3

SECOND ORDER APPROXIMATION, L=15
SMOOTHED TO THE ENDPOINT
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FIGURE 4
SMOOTHED TO THE ENDPOINT
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FIGURE 6
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FIGURE 7
SCHEME A
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FIGURE 8
SCHEME B
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FIGURE 9
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FIGURE I0
SCHEME D
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FIGURE11
10 HERTZPROCESSING,R = 0.01
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FIGURE 12
I0 HERTZ PROCESSING, R = 0.10
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FIGURE13
10 HERTZPROCESSING,R : 1.00
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FIGURE 14
I HERTZ PROCESSING, R = 0.01
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FIGURE 15

1 HERTZ PROCESSI_IG, R = 0.10
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FIGURE16
1 HERTZPROCESSI_IG,R = 1.00
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